t^2-81=121

Simple and best practice solution for t^2-81=121 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2-81=121 equation:



t^2-81=121
We move all terms to the left:
t^2-81-(121)=0
We add all the numbers together, and all the variables
t^2-202=0
a = 1; b = 0; c = -202;
Δ = b2-4ac
Δ = 02-4·1·(-202)
Δ = 808
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{808}=\sqrt{4*202}=\sqrt{4}*\sqrt{202}=2\sqrt{202}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{202}}{2*1}=\frac{0-2\sqrt{202}}{2} =-\frac{2\sqrt{202}}{2} =-\sqrt{202} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{202}}{2*1}=\frac{0+2\sqrt{202}}{2} =\frac{2\sqrt{202}}{2} =\sqrt{202} $

See similar equations:

| (6x-5)-(3x+1)=(3x+1)-(x+3) | | 6.8g+6=2.8g+30 | | 1+6y=–8 | | -4.8v+6,8=-33.04 | | 5(-5y+-8)=-65 | | r^2+11=-88 | | 33=(x=9)3- | | −2x+3=17 | | 1/5(15x-40)=13 | | 3z+21=75+51 | | 5p-12=63 | | 1=4x^2 | | (x)/(3)+4=10 | | 30+25x=45+18x | | 2x(x-5)=2x | | x+(x+4.50)+(x+5.75)=50.25 | | 5(5x−9)=205 | | Y=-4.9x^2+30x-40 | | 50.25x=4.5+5.75 | | (x+4)/(3)=10 | | 7(2x–5)=63 | | G(4)=1/2x-3 | | 2a/7=8 | | Y=4x^2+16x-1 | | 23p-4=10 | | 6.8x=6.8x=  −3.9−(−8.9x−1)−2x−3.9−(−8.9x−1)−2x | | 3k^2-12k+5=0 | | 3a-6=87 | | (3x-5)+(6x)=180 | | 3s²(s-2)=12s | | (p)/(6)=(p+3)/(8) | | -10×+8y=10 |

Equations solver categories